metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A novel zinc(II) complex with the ligand 2,2',2"-(1,4,7-triazanonane-1,4,7-triyl)-triacetate (NOTA)

Iria Pereira-García, Alejandro Macías,* Rufina Bastida and Laura Valencia

Departamento de Química Inorgánica, Facultade de Química, Avd. das Ciencias s/n, Universidade de Santiago de Compostela, 15706-Santiago de Compostela, A Coruña, Galicia, Spain

Correspondence e-mail: alejandroalberto.macias@usc.es

Received 20 October 2008; accepted 9 December 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.084; data-to-parameter ratio = 16.6.

The zinc(II) complex with NOTA [2,2',2"-(1,4,7-triazanonane-1,4,7-triyl)triacetate] has previously been synthesized and studied in solution, but was not isolated. The corresponding title Zn^{II} complex pentasodium(I) bis{[2,2',2"-(1,4,7-triazanonane-1,4,7-trivl)triacetato]zinc(II)} tris(perchlorate) methanol solvate, Na₅[Zn(C₁₂H₁₈N₃O₆)]₂(ClO₄)₃·CH₃OH, was crystallized as a sodium perchlorate double salt in methanol solution. The asymmetric unit contains two independent [Zn(NOTA)]⁻ complex anion entities, five sodium cations, three perchlorate anions and a methanol solvent molecule. The two Zn^{II} cations exhibit a distorted trigonal-prismatic N₃O₃ coordination with a bifacial arrangement of the donor atoms. Neither the methanol solvent molecule nor the perchlorate anions appear to be coordinated to the Zn centres. The crystal structure shows a layer arrangement parallel to (001) generated by interactions between the [Zn(NOTA)]⁻ units, the Na⁺ cations, two ClO_4^- units and the methanole molecule, leading to an overall layer composition of $[Na_5[Zn(C_{12}H_{18}N_3O_6)]_2(ClO_4)_2^{-1}$ CH₃OH]⁺. The third ClO₄ anion is isolated and situated between the layers without any significant interactions.

Related literature

Details on the synthesis of NOTA are given by Desreux (1980). For NOTA complexes of Al, Cr, Fe, Co, Ni, Cu, Ga and In characterized by X-ray diffraction studies, see: Boeyens & Van der Merwe (1997); Bossek *et al.* (1995); Clarke & Martell (1991); Craig *et al.* (1989); Jyo *et al.* (1990); Van der Merwe *et al.* (1983, 1985); Moore *et al.* (1990); Wieghardt *et al.* (1982). For general background, see: Geraldes *et al.* (1985).

Experimental

Crystal data

$Na_{5}[Zn(C_{12}H_{18}N_{3}O_{6})]_{2}(ClO_{4})_{3}$ -
CH ₄ O
$M_r = 1176.67$
Orthorhombic, Pna2 ₁
a = 16.8879 (5) Å
b = 9.4723 (3) Å
c = 26.4552 (9) Å

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.738, T_{\rm max} = 0.867$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.084$ S = 1.079954 reflections 601 parameters 1 restraint $V = 4232.0 \text{ (2) } \text{\AA}^3$ Z = 4Mo K\alpha radiation $\mu = 1.47 \text{ mm}^{-1}$ T = 100 (2) K $0.22 \times 0.10 \times 0.10 \text{ mm}$

31309 measured reflections 9954 independent reflections 8605 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
4585 Friedel pairs
Flack parameter: 0.383 (7)

 Table 1

 Selected bond lengths (Å).

Zn1-O5	2.027 (3)	Zn2-O23	2.047 (3)
Zn1-O1	2.062 (2)	Zn2-O21	2.057 (3)
Zn1-O3	2.066 (2)	Zn2-O25	2.072 (3)
Zn1-N2	2.160 (3)	Zn2-N22	2.198 (3)
Zn1-N3	2.172 (3)	Zn2-N21	2.201 (3)
Zn1-N1	2.189 (3)	Zn2-N23	2.201 (3)

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SHELXTL* (Sheldrick, 2008); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the Xunta de Galicia (Spain; Project PGIDIT07PXIB209039PR) for financial support. The X-ray data were collected at the Unidade de Raios X, RIAIDT, University of Santiago de Compostela, Spain.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2202).

References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Boeyens, J. C. A. & Van der Merwe, M. J. (1997). *Inorg. Chem.* **36**, 3779–3780. Bossek, U., Hanke, D., Wieghardt, K. & Nuber, B. (1995). *Polyhedron*, **12**, 1–5. Bruker (2005). *APEX2*. Bruker AXS Inc., Madison, Wisconsin, USA.

Clarke, E. T. & Martell, A. E. (1991). Inorg. Chim. Acta, 181, 273-280.

Craig, A. S., Helps, I. M., Parker, D., Ferguson, G., Bailey, N. A., Smith, J. A. S., Adams, H. & Williams, M. (1989). *Polyhedron*, **8**, 2481–2484.

Desreux, J. F. (1980). Inorg. Chem. 19, 1319-1324.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Geraldes, C. F. G. C., Alpoim, M. C., Marques, M. P. M., Sherry, A. D. & Singh, M. (1985). *Inorg. Chem.* 24, 3876–3881.

Jyo, A., Kohno, Y., Terazono, Y. & Kawano, S. (1990). Anal. Sci. 6, 629-631.

- Moore, D. A., Fanwick, P. E. & Welch, M. J. (1990). Inorg. Chem. 29, 672-676.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Van der Merwe, M. J., Boeyens, J. C. A. & Hancock, R. D. (1983). *Inorg. Chem.* 22, 3490–3491.
- Van der Merwe, M. J., Boeyens, J. C. A. & Hancock, R. D. (1985). *Inorg. Chem.* 24, 1208–1213.
- Wieghardt, K., Bossek, U., Chaudhuri, P., Herrmann, W., Menke, B. C. & Weiss, J. (1982). *Inorg. Chem.* 21, 4308–4314.

Acta Cryst. (2009). E65, m84-m85 [doi:10.1107/S1600536808041895]

A novel zinc(II) complex with the ligand 2,2',2"-(1,4,7-triazanonane-1,4,7-triyl)triacetate (NOTA)

I. Pereira-García, A. Macías, R. Bastida and L. Valencia

Comment

NOTA (1,4,7-triazacyclononane-N, N', N"-triacetate) has a well-known preference for small metal ions, and many metal NOTA complexes (*M* = Al, Cr, Fe, Co, Ni, Cu, Ga and In) have been structurally characterized: (Boeyens & Van der Merwe, 1997; Bossek *et al.*, 1995; Clarke & Martell, 1991; Craig *et al.*, 1989; Jyo *et al.*, 1990; Van der Merwe *et al.*, 1983, 1985; Moore *et al.*, 1990; Wieghardt *et al.*, 1982).

Our starting objective was the synthesis of NOTA (1,4,7-triazacyclononane-N,N',N''-triacetate) complexes in aqueous solutions and its isolation as salts of the type [X][M(NOTA)], where X^+ is a monovalent cation and M is Zn^{II} or Cd(II). We also developed a species distribution diagram for NOTA complexes in aqueous solution based on the experimental data obtained by Geraldes *et al.* (1985). From these experiments we concluded that the anionic salts [Zn(NOTA)]⁻ and [Cd(NOTA)]⁻, due to their extreme solubility in aqueous solution, do not precipitate as neither sodium nor the alkylammonium salts. These difficulties for isolating the complexes led us to synthesize the Zn^{II} and Cd(II) NOTA complexes in methanol, a solvent in which the sodium salts are less soluble than in aqueous solution. A Zn^{II} complex with a 1:1 composition was prepared by reaction of the NOTA ligand L with hydrous Zn^{II} perchlorate in a 1:1 molar ratio of metal:ligand. This complex was synthesized by a single-step procedure as described and the reaction revealed a pure product that was also characterized by ESI-MS and ¹H-NMR spectroscopy.

The molecular structure of the complex entity $[Zn(NOTA)]^{-}$ and selected bond lengths (Å) and angles (°) of the coordination environment of Zn^{II} are given in Fig. 1 and Table 1, respectively. The asymmetric unit contains two independent mononuclear complex $[Zn(NOTA)]^{-}$ entities, five sodium cations, three perchlorate anions and a methanol solvent molecule. The coordination environment, distances and angles of both independent $[Zn(NOTA)]^{-}$ molecules are similar. When the metal centre coordination requirements do not favour an octahedral environment, the metal core geometry in NOTA complexes is trigonal-prismatic (Wieghardt *et al.*, 1982). Thus, the Zn^{II} centres present a six-coordinated N₃O₃ core in a distorted trigonal-prismatic arrangement. Each Zn atom is bound to three N atoms from the macrocyclic backbone and three O atoms from the pendant-arms. Like in all the other known structures of NOTA complexes, in the $[Zn(NOTA)]^{-}$ entities the donor atoms are disposed in a bifacial arrangement. Three N atoms occupy one facial plane of the prism, and three O atoms belong to the other plane. The average Zn—N and Zn—O bond lengths are 2.187 Å and 2.055 Å, respectively. These bond lengths are in the range found for *M*–N and *M*–O bonds in other NOTA complexes with divalent transition metals.

The crystal structure shows a layer arrangement parallel (001) generated by interactions between the $[Zn(NOTA)]^{-1}$ units, the Na⁺ cations, two ClO₄⁻ units and the methanol molecule, leading to an overall layer composition of $[Na_5[Zn(C_{12}H_{18}N_3O_6)]_2(ClO_4)_2$ CH₃OH]⁺. The third ClO₄ anion is isolated and situated between the layers without any significant interactions (Fig. 2).

Experimental

Synthesis of the macrocycle NOTAH₃: The ligand NOTA was prepared from its triazamacrocycle precursor TACN by alkylation with bromoacetic acid using a modification of a previously reported method (Desreux, 1980). TACN and Na-OH were dissolved in water, and to the solution was added a bromoacetic acid/ NaOH aqueous solution at 273 K. The reaction mixture temperature was raised to 323 K, and a NaOH aqueous solution was added. The mixture was maintained at 323 K under stirring for 5 d. Then, concentrated hydrobromic acid was added until a pH of ~ 7 was reached. NO-TAH₃ does not precipitate from aqueous solutions in a well-defined state, thus a purification stage was needed. After a liquid-liquid extraction with n-butanol, a white powder characterized as a salt of the expected ligand was finally obtained. $C_{12}H_{21}N_3O_6.(CH_2BrCOOH)_3:MS$ (ESI, *m/z*) 304 [H(LH₃)]⁺, 326 {Na(LH₃)]}⁺, 348 [Na₂(LH₂)]⁺; ¹H NMR data: (250 MHz, D₂O, SiMe₄): d 3.5 (s, 12 H from –CH₂– in the ring), d 3.9 (s, 6 H from CH₂BrCOOH), d 4.3 (s, 6 H from –CH₂– in pendants).

Synthesis of the metal complexes: Hydrated zinc perchlorate was added to a solution of the purified ligand NOTAH₃ in methanol. The reaction mixture was heated and then cooled. A concentrated NaOH methanolic solution was added until a pH of 7 was reached. Single crystals were obtained by the diffusion vapour-phase crystallization method in a MeOH/Et₂O solvent system. The Zn^{II} complex was characterized by ESI-MS, ¹HNMR, COSY NMR and X-ray diffraction. Na[ZnL]1.5(NaClO₄).0.5MeOH: MS(ESI, *m/z*) 366 [Zn(LH₂)]⁺, 388 {Na[Zn(LH)]}⁺. Colour: colourless.

The correspondent Cd(II) complex was also obtained in methanolic solution, but it has not been isolated in crystalline form.

Refinement

The absolute structure parameter was refined (Flack, 1983) and points to racemic twinning, with a ratio of the twin fractions of approximately 3:2. The hydrogen atoms attached to the carbon atoms were located in their calculated positions and refined using a riding model with U(H) equal to $1.2 \times U_{eq}$ (1.5 for methyl groups) of the parent atom and C—H= 0.97 Å. The hydrogen atom attached to the oxygen atom in the methanol molecule was localized in a Fourier map and refined with U_{iso} constrained to be $1.5 \times U_{eq}$ of the O atom.

Figures

Fig. 1. The molecular structure of one $[Zn(NOTA)]^{-1}$ complex with atom labelling and displacement ellipsoids drawn at the 50% probability level. The structure of the second $[Zn(NOTA)]^{-1}$ entity is very similar.

Fig. 2. The crystal structure of the title compound in a projection along [010], emphasizing the layer arrangement parallel (001) as generated by interactions between the [Zn(NOTA)]⁻ units, the Na^+ cations, two ClO_4^- units and the methanol molecule. The third ClO_4 anion is isolated and situated between the layers without any significant interactions.

pentasodium(I) bis[(1,4,7-triazacyclononane-N,N',N''-triacetato)zinc(II)] tris(perchlorate) methanol solvate

Crystal data

$Na_5[Zn(C_{12}H_{18}N_3O_6)]_2(ClO_4)_3 \cdot CH_4O$	$F_{000} = 2392$
$M_r = 1176.67$	$D_{\rm x} = 1.847 {\rm ~Mg~m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 9827 reflections
a = 16.8879 (5) Å	$\theta = 2.4 - 27.7^{\circ}$
b = 9.4723 (3) Å	$\mu = 1.47 \text{ mm}^{-1}$
c = 26.4552 (9) Å	T = 100 (2) K
$V = 4232.0 (2) \text{ Å}^3$	Prism, colourless
Z = 4	$0.22 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	9954 independent reflections
Radiation source: fine-focus sealed tube	8605 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 100(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ω and ϕ scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -21 \rightarrow 22$
$T_{\min} = 0.738, T_{\max} = 0.867$	$k = -12 \rightarrow 12$
31309 measured reflections	$l = -35 \rightarrow 32$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + (0.0392P)^2 + 1.4688P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.084$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.56 \text{ e } \text{\AA}^{-3}$
9954 reflections	$\Delta \rho_{min} = -0.58 \text{ e } \text{\AA}^{-3}$

601 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
1 restraint	Extinction coefficient: 0.00024 (8)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 4585 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.383 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	1.07460 (2)	0.01616 (4)	0.917626 (16)	0.00860 (9)
N1	1.12568 (18)	-0.1518 (3)	0.96418 (12)	0.0120 (7)
N2	1.12185 (18)	0.1482 (3)	0.97696 (12)	0.0118 (7)
N3	0.97800 (19)	-0.0083 (3)	0.97112 (12)	0.0129 (7)
O1	1.16120 (14)	-0.0640 (3)	0.87080 (10)	0.0118 (5)
O2	1.21023 (15)	-0.2696 (3)	0.84582 (10)	0.0149 (6)
O3	1.08723 (14)	0.2045 (3)	0.87911 (10)	0.0109 (5)
O4	1.14849 (15)	0.4106 (3)	0.88043 (10)	0.0138 (6)
O5	0.98658 (14)	-0.0531 (3)	0.87180 (10)	0.0127 (6)
O6	0.85724 (14)	-0.0775 (3)	0.86305 (10)	0.0134 (6)
C1	1.1941 (2)	-0.0791 (4)	0.98715 (16)	0.0161 (8)
H1A	1.2341	-0.0596	0.9607	0.019*
H1B	1.2187	-0.1417	1.0127	0.019*
C2	1.1699 (2)	0.0601 (4)	1.01240 (15)	0.0174 (8)
H2A	1.1386	0.0398	1.0432	0.021*
H2B	1.2179	0.1128	1.0226	0.021*
C3	1.0484 (2)	0.2058 (4)	1.00086 (15)	0.0134 (8)
H3A	1.0233	0.2739	0.9774	0.016*
H3B	1.0629	0.2573	1.0321	0.016*
C4	0.9891 (2)	0.0898 (4)	1.01387 (15)	0.0169 (9)
H4A	1.0082	0.0367	1.0437	0.020*
H4B	0.9376	0.1332	1.0227	0.020*
C5	0.9838 (2)	-0.1590 (4)	0.98620 (15)	0.0157 (8)
H5A	0.9663	-0.2188	0.9576	0.019*
H5B	0.9474	-0.1764	1.0149	0.019*
C6	1.0663 (2)	-0.2020 (4)	1.00137 (14)	0.0156 (8)
H6A	1.0787	-0.1621	1.0350	0.019*

H6B	1.0692	-0.3061	1.0039	0.019*
C7	1.1508 (2)	-0.2609 (4)	0.92774 (14)	0.0152 (8)
H7A	1.1064	-0.3272	0.9217	0.018*
H7B	1.1955	-0.3151	0.9421	0.018*
C8	1.1760 (2)	-0.1946 (4)	0.87764 (14)	0.0095 (7)
C9	1.1674 (2)	0.2606 (4)	0.95153 (14)	0.0140 (8)
H9A	1.2228	0.2292	0.9470	0.017*
H9B	1.1678	0.3460	0.9731	0.017*
C10	1.1323 (2)	0.2972 (4)	0.90042 (14)	0.0107 (8)
C11	0.9056 (2)	0.0144 (4)	0.94157 (15)	0.0128 (8)
H11A	0.8936	0.1166	0.9399	0.015*
H11B	0.8605	-0.0336	0.9582	0.015*
C12	0.9163 (2)	-0.0434 (4)	0.88855 (15)	0.0120 (8)
Zn2	0.60272 (2)	0.05820 (4)	0.708125 (16)	0.00988 (9)
N21	0.53471 (18)	-0.0972 (3)	0.66409 (11)	0.0111 (7)
N22	0.68311 (18)	0.0323 (3)	0.64345 (12)	0.0137 (7)
N23	0.54514 (19)	0.2003 (3)	0.65352 (12)	0.0141 (7)
O21	0.52931 (15)	-0.0254 (3)	0.76249 (10)	0.0134 (6)
O22	0.45361 (15)	-0.2103 (3)	0.78197 (10)	0.0168 (6)
O23	0.70301 (16)	-0.0144 (3)	0.74292 (10)	0.0160 (6)
O24	0.83384 (17)	-0.0339 (3)	0.73661 (12)	0.0267 (7)
O25	0.60456 (15)	0.2484 (3)	0.74679 (10)	0.0142 (6)
O26	0.55583 (15)	0.4664 (3)	0.74935 (10)	0.0145 (6)
C21	0.5825 (2)	-0.1491 (4)	0.62115 (14)	0.0129 (8)
H21A	0.5636	-0.1044	0.5895	0.015*
H21B	0.5754	-0.2524	0.6178	0.015*
C22	0.6700 (2)	-0.1160 (4)	0.62845 (16)	0.0162 (8)
H22A	0.6920	-0.1791	0.6548	0.019*
H22B	0.6986	-0.1350	0.5965	0.019*
C23	0.6640 (2)	0.1362 (4)	0.60296 (15)	0.0161 (8)
H23A	0.6354	0.0882	0.5752	0.019*
H23B	0.7136	0.1761	0.5891	0.019*
C24	0.6130 (2)	0.2540 (4)	0.62434 (16)	0.0160 (8)
H24A	0.6460	0.3145	0.6465	0.019*
H24B	0.5933	0.3132	0.5962	0.019*
C25	0.4863 (2)	0.1230 (4)	0.62259 (15)	0.0151 (8)
H25A	0.5090	0.1028	0.5888	0.018*
H25B	0.4386	0.1823	0.6179	0.018*
C26	0.4633 (2)	-0.0149 (4)	0.64821 (15)	0.0132 (8)
H26A	0.4303	0.0058	0.6783	0.016*
H26B	0.4312	-0.0725	0.6246	0.016*
C27	0.5128 (2)	-0.2061 (4)	0.70054 (15)	0.0145 (8)
H27A	0.5563	-0.2757	0.7034	0.017*
H27B	0.4650	-0.2564	0.6884	0.017*
C28	0.4961 (2)	-0.1420 (4)	0.75278 (14)	0.0121 (8)
C29	0.7628 (2)	0.0498 (4)	0.66439 (15)	0.0175 (9)
H29A	0.7774	0.1510	0.6637	0.021*
H29B	0.8013	-0.0023	0.6432	0.021*
C30	0.7672 (2)	-0.0043 (4)	0.71825 (16)	0.0165 (9)

C31	0.5101 (2)	0.3140 (4)	0.68376 (14)	0 0140 (8)
1121 4	0 45 (5			0.0110(0)
HJIA	0.4565	0.2856	0.6950	0.017*
H31B	0.5048	0.3998	0.6627	0.017*
C32	0.5604 (2)	0.3469 (4)	0.72938 (15)	0.0140 (8)
Cl1P	0.90733 (6)	0.49270 (10)	0.94241 (4)	0.0164 (2)
Cl2P	0.76010 (6)	0.50986 (10)	0.57365 (4)	0.0207 (2)
Cl3P	0.85405 (6)	0.29914 (10)	0.79612 (4)	0.0198 (2)
O1P	0.87409 (16)	0.4307 (3)	0.81979 (11)	0.0225 (7)
O2P	0.78137 (15)	0.2457 (3)	0.81750 (11)	0.0215 (7)
O3P	0.91798 (15)	0.2025 (3)	0.80605 (11)	0.0199 (6)
O4P	0.84347 (19)	0.3166 (3)	0.74240 (12)	0.0322 (8)
O5P	0.98116 (16)	0.4732 (3)	0.91612 (13)	0.0264 (7)
O6P	0.92441 (19)	0.5250 (3)	0.99436 (12)	0.0300 (8)
O7P	0.86528 (16)	0.6093 (3)	0.91977 (11)	0.0196 (6)
O8P	0.86005 (19)	0.3672 (3)	0.93927 (13)	0.0326 (8)
O9P	0.81100 (17)	0.6321 (3)	0.57245 (13)	0.0307 (7)
O10P	0.7577 (3)	0.4429 (4)	0.52517 (14)	0.0578 (12)
O11P	0.68191 (19)	0.5555 (3)	0.58564 (16)	0.0445 (10)
O12P	0.78848 (18)	0.4105 (3)	0.61010 (12)	0.0303 (8)
C1S	0.7491 (3)	0.6009 (5)	0.71492 (18)	0.0350 (12)
H1S1	0.7719	0.5133	0.7016	0.053*
H1S2	0.7837	0.6804	0.7064	0.053*
H1S3	0.6967	0.6160	0.6999	0.053*
O1S	0.74181 (18)	0.5907 (3)	0.76745 (11)	0.0238 (7)
H1S	0.708 (3)	0.650 (5)	0.7779 (19)	0.036*
Na1	0.94165 (8)	0.95334 (15)	0.78618 (6)	0.0129 (3)
Na2	0.84425 (8)	0.67402 (15)	0.83292 (6)	0.0180 (3)
Na3	0.52011 (8)	0.11140 (16)	0.83393 (6)	0.0175 (3)
Na4	0.66600 (9)	0.40410 (15)	0.80596 (6)	0.0146 (3)
Na5	0.74113 (8)	-0.00225 (14)	0.82877 (6)	0.0121 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.00958 (19)	0.00826 (19)	0.0080 (2)	-0.00044 (15)	-0.00002 (19)	-0.00020 (19)
N1	0.0161 (16)	0.0096 (15)	0.0102 (16)	-0.0003 (12)	-0.0014 (13)	-0.0001 (13)
N2	0.0135 (16)	0.0102 (16)	0.0117 (16)	-0.0013 (12)	-0.0008 (13)	-0.0011 (13)
N3	0.0172 (18)	0.0110 (16)	0.0106 (16)	-0.0007 (12)	0.0024 (14)	-0.0027 (13)
O1	0.0138 (13)	0.0109 (13)	0.0106 (13)	0.0039 (10)	0.0041 (11)	0.0003 (11)
O2	0.0156 (14)	0.0128 (14)	0.0164 (14)	0.0043 (10)	0.0033 (12)	-0.0003 (11)
O3	0.0119 (13)	0.0117 (13)	0.0092 (13)	-0.0018 (10)	-0.0016 (11)	0.0001 (11)
O4	0.0160 (14)	0.0092 (13)	0.0162 (14)	-0.0019 (10)	0.0031 (11)	0.0019 (11)
O5	0.0076 (13)	0.0175 (14)	0.0129 (14)	-0.0008 (10)	0.0012 (11)	-0.0014 (11)
O6	0.0137 (13)	0.0096 (13)	0.0169 (14)	-0.0006 (10)	-0.0021 (12)	0.0009 (11)
C1	0.011 (2)	0.021 (2)	0.016 (2)	0.0011 (15)	-0.0043 (16)	0.0070 (17)
C2	0.023 (2)	0.019 (2)	0.010 (2)	-0.0010 (17)	-0.0045 (17)	0.0019 (17)
C3	0.0168 (19)	0.0116 (18)	0.012 (2)	-0.0009 (15)	0.0002 (17)	-0.0036 (15)
C4	0.018 (2)	0.021 (2)	0.012 (2)	-0.0015 (16)	0.0039 (17)	-0.0072 (17)

C5	0.019 (2)	0.019 (2)	0.0092 (19)	-0.0068 (16)	0.0041 (16)	0.0022 (16)
C6	0.023 (2)	0.014 (2)	0.010 (2)	-0.0046 (16)	0.0002 (17)	0.0041 (15)
C7	0.020 (2)	0.0091 (18)	0.016 (2)	0.0005 (14)	0.0023 (17)	-0.0012 (15)
C8	0.0067 (17)	0.0114 (18)	0.0104 (19)	0.0003 (13)	-0.0034 (15)	-0.0009 (15)
C9	0.016 (2)	0.0124 (19)	0.014 (2)	-0.0023 (15)	-0.0031 (16)	-0.0035 (16)
C10	0.0114 (18)	0.0064 (17)	0.0142 (19)	0.0013 (13)	0.0013 (15)	-0.0013 (14)
C11	0.0127 (19)	0.0101 (18)	0.016 (2)	-0.0017 (14)	0.0032 (16)	-0.0029 (16)
C12	0.014 (2)	0.0089 (18)	0.013 (2)	0.0000 (14)	-0.0019 (16)	0.0032 (15)
Zn2	0.0111 (2)	0.0108 (2)	0.0077 (2)	0.00016 (16)	0.00000 (19)	-0.00050 (18)
N21	0.0112 (16)	0.0143 (17)	0.0078 (16)	0.0000 (12)	0.0030 (13)	-0.0013 (13)
N22	0.0101 (16)	0.0163 (16)	0.0148 (17)	-0.0048 (12)	-0.0013 (14)	-0.0020 (14)
N23	0.0176 (17)	0.0144 (16)	0.0103 (16)	-0.0007 (13)	-0.0013 (14)	-0.0003 (14)
O21	0.0161 (14)	0.0144 (14)	0.0095 (14)	-0.0014 (11)	0.0025 (11)	0.0012 (11)
O22	0.0164 (14)	0.0139 (14)	0.0202 (15)	0.0009 (11)	0.0064 (12)	0.0014 (12)
O23	0.0185 (15)	0.0166 (14)	0.0130 (15)	0.0031 (11)	-0.0027 (12)	-0.0022 (12)
O24	0.0146 (15)	0.0318 (18)	0.034 (2)	0.0028 (12)	-0.0097 (14)	-0.0080 (15)
O25	0.0163 (14)	0.0130 (14)	0.0133 (14)	0.0019 (11)	-0.0037 (12)	-0.0006 (11)
O26	0.0136 (14)	0.0102 (13)	0.0197 (15)	-0.0007 (10)	0.0038 (12)	-0.0048 (11)
C21	0.016 (2)	0.0158 (19)	0.0072 (18)	-0.0027 (15)	0.0010 (15)	-0.0052 (15)
C22	0.017 (2)	0.018 (2)	0.014 (2)	0.0015 (16)	0.0035 (17)	-0.0061 (17)
C23	0.018 (2)	0.020 (2)	0.0105 (19)	-0.0059 (16)	0.0012 (17)	0.0003 (17)
C24	0.017 (2)	0.016 (2)	0.014 (2)	-0.0064 (15)	-0.0006 (17)	-0.0004 (17)
C25	0.016 (2)	0.014 (2)	0.015 (2)	-0.0009 (15)	-0.0052 (17)	0.0031 (16)
C26	0.014 (2)	0.0134 (19)	0.0118 (19)	-0.0017 (14)	-0.0033 (16)	-0.0011 (16)
C27	0.0155 (19)	0.0154 (19)	0.013 (2)	-0.0046 (14)	0.0017 (16)	-0.0016 (16)
C28	0.0121 (19)	0.0119 (19)	0.0122 (19)	0.0024 (15)	0.0004 (16)	0.0007 (15)
C29	0.010 (2)	0.028 (2)	0.015 (2)	-0.0014 (16)	-0.0020 (16)	-0.0045 (17)
C30	0.018 (2)	0.0094 (18)	0.022 (2)	-0.0006 (14)	-0.0025 (18)	-0.0039 (16)
C31	0.016 (2)	0.0107 (19)	0.015 (2)	0.0041 (14)	-0.0009 (17)	0.0030 (16)
C32	0.0125 (19)	0.0163 (19)	0.0131 (19)	0.0000 (15)	0.0081 (16)	0.0014 (16)
Cl1P	0.0172 (5)	0.0118 (4)	0.0201 (5)	0.0008 (4)	0.0043 (4)	0.0007 (4)
Cl2P	0.0179 (5)	0.0190 (5)	0.0250 (6)	-0.0022 (4)	-0.0024 (4)	0.0056 (4)
C13P	0.0173 (5)	0.0157 (5)	0.0264 (6)	-0.0003 (4)	-0.0004 (4)	-0.0019 (4)
O1P	0.0213 (15)	0.0160 (15)	0.0302 (18)	-0.0028 (12)	-0.0018 (13)	-0.0033 (13)
O2P	0.0113 (15)	0.0157 (14)	0.0376 (19)	-0.0009 (11)	0.0024 (13)	0.0032 (13)
O3P	0.0133 (14)	0.0142 (15)	0.0322 (17)	0.0006 (11)	-0.0025 (13)	-0.0011 (13)
O4P	0.041 (2)	0.0296 (18)	0.0256 (17)	0.0040 (15)	-0.0028 (15)	-0.0033 (15)
O5P	0.0209 (15)	0.0348 (16)	0.0236 (16)	0.0103 (12)	0.0060 (15)	0.0010 (15)
O6P	0.040 (2)	0.0317 (18)	0.0178 (16)	0.0064 (14)	0.0047 (15)	0.0021 (14)
O7P	0.0225 (15)	0.0153 (13)	0.0211 (15)	0.0024 (11)	-0.0027 (14)	0.0028 (13)
O8P	0.0323 (19)	0.0170 (16)	0.048 (2)	-0.0055 (13)	0.0015 (16)	0.0053 (15)
O9P	0.0257 (17)	0.0278 (17)	0.0384 (19)	-0.0113 (13)	-0.0034 (15)	0.0137 (15)
O10P	0.093 (3)	0.054 (3)	0.026 (2)	0.006 (2)	-0.011 (2)	-0.0121 (19)
O11P	0.0185 (17)	0.0303 (19)	0.085 (3)	0.0005 (14)	0.0062 (18)	0.022 (2)
O12P	0.0276 (18)	0.0225 (17)	0.041 (2)	-0.0039 (13)	-0.0087 (15)	0.0138 (14)
C1S	0.041 (3)	0.032 (3)	0.032 (3)	0.005 (2)	-0.002 (2)	0.001 (2)
O1S	0.0243 (17)	0.0277 (17)	0.0193 (16)	0.0010 (13)	0.0058 (14)	-0.0048 (13)
Na1	0.0106 (7)	0.0141 (8)	0.0140 (8)	-0.0015 (6)	-0.0006 (6)	0.0006 (6)
Na2	0.0176 (8)	0.0149 (8)	0.0216 (8)	0.0011 (6)	0.0059 (7)	-0.0020 (7)

Na3	0.0161 (8)	0.0166 (8)	0.0198 (9)	0.0007 (6)	-0.0018 (7)	-0.0064 (7)
Na4	0.0157 (8)	0.0149 (8)	0.0130 (8)	0.0000 (6)	0.0011 (6)	-0.0036 (6)
Na5	0.0136 (8)	0.0104 (7)	0.0124 (8)	-0.0001 (5)	-0.0012 (6)	-0.0002 (6)
Geometric param	neters (Å, °)					
Zn1—O5		2.027 (3)	O24—N	la5	2.9	13 (3)
Zn1—O1		2.062 (2)	O25—C	232	1.2	80 (4)
Zn1—O3		2.066 (2)	O25—N	la4	2.3	88 (3)
Zn1—N2		2.160 (3)	025—N	la3	3.0	05 (3)
Zn1—N3		2.172 (3)	O26—C	232	1.2	51 (4)
Zn1—N1		2.189 (3)	O26—N	la1 ^v	2.2	91 (3)
N1—C7		1.475 (5)	O26—N	la4	2.4	60 (3)
N1—C1		1.477 (5)	C21—C	22	1.5	24 (5)
N1—C6		1.483 (5)	С21—Н	21A	0.9	900
N2—C9		1.475 (5)	С21—Н	21B	0.9	900
N2—C3		1.495 (5)	С22—Н	22A	0.9	900
N2—C2		1.495 (5)	С22—Н	22B	0.9	900
N3—C11		1.467 (5)	С23—С	24	1.5	19 (5)
N3—C4		1.476 (5)	С23—Н	23A	0.9	900
N3—C5		1.485 (5)	С23—Н	23B	0.9	900
01		1.276 (4)	С24—Н	24A	0.9	900
O1—Na4 ¹		2.289 (3)	С24—Н	24B	0.9	900
O2—C8		1.244 (4)	С25—С	26	1.5	23 (5)
O2—Na5 ⁱⁱ		2.268 (3)	С25—Н	25A	0.9	900
O2—Na2 ⁱ		2.461 (3)	С25—Н	25B	0.9	900
O3—C10		1.291 (4)	С26—Н	26A	0.9	900
O3—Na3 ⁱ		2.399 (3)	С26—Н	26B	0.9	900
O3—Na4 ⁱ		2.564 (3)	С27—С	28	1.5	36 (5)
O4—C10		1.228 (4)	С27—Н	27A	0.9	900
O4—Na5 ⁱ		2.252 (3)	С27—Н	27B	0.9	900
O4—Na3 ⁱ		2.501 (3)	С29—С	30	1.5	16 (6)
O5—C12		1.271 (4)	С29—Н	29A	0.9	900
O5—Na1 ⁱⁱⁱ		2.390 (3)	С29—Н	29B	0.9	900
O6—C12		1.246 (4)	C30—N	la5	2.9	57 (4)
O6—Na5		2.275 (3)	C31—C	32	1.5	08 (5)
O6—Na2 ⁱⁱⁱ		2.495 (3)	С31—Н	[31A	0.9	900
O6—Na1 ⁱⁱⁱ		2.501 (3)	С31—Н	31B	0.9	900
C1—C2		1.533 (6)	C32—N	a4	2.7	53 (4)
C1—H1A		0.9900	Cl1P—0	O8P	1.4	35 (3)
C1—H1B		0.9900	Cl1P—0	D6P	1.4	37 (3)
C2—H2A		0.9900	Cl1P—0	D5P	1.4	40 (3)
C2—H2B		0.9900	Cl1P—0	O7P	1.4	44 (3)
C3—C4		1.527 (5)	Cl2P—C	D11P	1.4	25 (3)
С3—НЗА		0.9900	Cl2P—C	D12P	1.4	30 (3)
С3—Н3В		0.9900	Cl2P—C	D10P	1.4	31 (4)
C4—H4A		0.9900	Cl2P—C	09P	1.4	42 (3)

C4—H4B	0.9900	Cl3P—O1P	1.435 (3)
C5—C6	1.507 (5)	Cl3P—O3P	1.440 (3)
C5—H5A	0.9900	Cl3P—O4P	1.442 (3)
С5—Н5В	0.9900	Cl3P—O2P	1.443 (3)
С6—Н6А	0.9900	Cl3P—Na3 ⁱ	3.0957 (17)
С6—Н6В	0.9900	Cl3P—Na4	3.3378 (18)
C7—C8	1.527 (5)	O1P—Na2	2.385 (3)
С7—Н7А	0.9900	O1P—Na3 ⁱ	2.526 (3)
С7—Н7В	0.9900	O2P—Na5	2.463 (3)
C8—Na2 ⁱ	3.083 (4)	O2P—Na4	2.478 (3)
C9—C10	1.516 (5)	O3P—Na1 ⁱⁱⁱ	2.451 (3)
С9—Н9А	0.9900	O3P—Na3 ⁱ	2.574 (3)
С9—Н9В	0.9900	O5P—Na3 ⁱ	2.409 (4)
C10—Na3 ⁱ	2.727 (4)	O7P—Na2	2.404 (3)
C11—C12	1.516 (5)	C1S—O1S	1.398 (6)
C11—H11A	0.9900	C1S—H1S1	0.9800
C11—H11B	0.9900	C1S—H1S2	0.9800
C12—Na1 ⁱⁱⁱ	2.742 (4)	C1S—H1S3	0.9800
Zn2—O23	2.047 (3)	O1S—Na4	2.409 (3)
Zn2—O21	2.057 (3)	O1S—Na2	2.572 (3)
Zn2—O25	2.072 (3)	O1S—H1S	0.85 (5)
Zn2—N22	2.198 (3)	Na1—O24 ^{v1}	2.247 (3)
Zn2—N21	2.201 (3)	Na1—O26 ^{vii}	2.291 (3)
Zn2—N23	2.201 (3)	Na1—O22 ⁱ	2.313 (3)
Zn2—Na3	3.6439 (16)	Na1—O5 ^{vi}	2.390 (3)
N21—C27	1.460 (5)	Na1—O3P ^{vi}	2.451 (3)
N21—C21	1.477 (5)	Na1—O6 ^{vi}	2.501 (3)
N21—C26	1.496 (5)	Na1—C12 ^{vi}	2.742 (4)
N22—C29	1.465 (5)	Na2—O22 ⁱ	2.312 (3)
N22—C22	1.476 (5)	Na2—O2 ^{iv}	2.461 (3)
N22—C23	1.490 (5)	Na2—O6 ^{vi}	2.495 (3)
N23—C31	1.467 (5)	Na2—C8 ^{iv}	3.083 (4)
N23—C24	1.473 (5)	Na3—O3 ^{iv}	2.399 (3)
N23—C25	1.480 (5)	Na3—O5P ^{iv}	2.409 (4)
O21—C28	1.265 (4)	Na3—O4 ^{iv}	2.501 (3)
O21—Na3	2.297 (3)	Na3—O1P ^{iv}	2.526 (3)
O22—C28	1.237 (4)	Na3—O3P ^{iv}	2.574 (3)
O22—Na2 ^{iv}	2.312 (3)	Na3—C10 ^{iv}	2.727 (4)
O22—Na1 ^{iv}	2.313 (3)	Na3—Cl3P ^{iv}	3.0957 (17)
O23—C30	1.269 (5)	Na4—O1 ^{iv}	2.289 (3)
O23—Na5	2.364 (3)	Na4—O3 ^{iv}	2.564 (3)
O24—C30	1.257 (5)	Na5—O4 ^{iv}	2.252 (3)
O24—Na1 ⁱⁱⁱ	2.247 (3)	Na5—O2 ^{viii}	2.268 (3)

05 7 1 01	02 20 (10)		100.1
05—Zn1—01	92.38 (10)	N23—C24—H24A	109.1
05—Zn1—03	93.47 (10)	C23—C24—H24A	109.1
Ol—Znl—O3	87.04 (10)	N23—C24—H24B	109.1
O5—Zn1—N2	153.25 (11)	C23—C24—H24B	109.1
O1—Zn1—N2	112.82 (11)	H24A—C24—H24B	107.8
O3—Zn1—N2	79.63 (11)	N23—C25—C26	110.5 (3)
O5—Zn1—N3	78.72 (11)	N23—C25—H25A	109.6
O1—Zn1—N3	152.26 (11)	C26—C25—H25A	109.6
O3—Zn1—N3	119.42 (11)	N23—C25—H25B	109.6
N2—Zn1—N3	82.29 (12)	С26—С25—Н25В	109.6
O5—Zn1—N1	112.96 (11)	H25A—C25—H25B	108.1
O1—Zn1—N1	77.94 (11)	N21—C26—C25	111.5 (3)
O3—Zn1—N1	149.83 (11)	N21—C26—H26A	109.3
N2—Zn1—N1	82.32 (12)	C25—C26—H26A	109.3
N3—Zn1—N1	81.47 (12)	N21—C26—H26B	109.3
O5—Zn1—Na4 ⁱ	83.44 (8)	С25—С26—Н26В	109.3
O1-Zn1-Na4 ⁱ	40.66 (8)	H26A—C26—H26B	108.0
O3—Zn1—Na4 ⁱ	48.41 (7)	N21—C27—C28	111.2 (3)
N2-Zn1-Na4 ⁱ	109.47 (9)	N21—C27—H27A	109.4
N3—Zn1—Na4 ⁱ	157.82 (9)	С28—С27—Н27А	109.4
N1—Zn1—Na4 ⁱ	117.97 (9)	N21—C27—H27B	109.4
C7—N1—C1	111.8 (3)	С28—С27—Н27В	109.4
C7—N1—C6	113.8 (3)	H27A—C27—H27B	108.0
C1—N1—C6	113.9 (3)	O22—C28—O21	126.0 (4)
C7—N1—Zn1	104.7 (2)	O22—C28—C27	117.5 (3)
C1—N1—Zn1	101.6 (2)	O21—C28—C27	116.5 (3)
C6—N1—Zn1	109.9 (2)	N22—C29—C30	111.2 (3)
C9—N2—C3	111.2 (3)	N22—C29—H29A	109.4
C9—N2—C2	114.0 (3)	С30—С29—Н29А	109.4
C3—N2—C2	112.9 (3)	N22—C29—H29B	109.4
C9—N2—Zn1	106.2 (2)	С30—С29—Н29В	109.4
C3—N2—Zn1	102.3 (2)	H29A—C29—H29B	108.0
C2—N2—Zn1	109.4 (2)	O24—C30—O23	123.3 (4)
C11—N3—C4	114.9 (3)	O24—C30—C29	118.8 (4)
C11—N3—C5	109.8 (3)	O23—C30—C29	117.8 (3)
C4—N3—C5	113.0 (3)	O24—C30—Na5	75.7 (2)
C11—N3—Zn1	105.3 (2)	023—C30—Na5	50.56 (19)
C4—N3—Zn1	109.7(2)	C29—C30—Na5	156 9 (3)
C_{5} N3 Z_{n1}	103.2(2)	$N_{23} - C_{31} - C_{32}$	111 2 (3)
C8 = O1 = Zn1	1143(2)	N23-C31-H31A	109.4
$C8 - O1 - Na4^{i}$	137.8 (2)	C32—C31—H31A	109.4
$Zn1-O1-Na4^{i}$	103.41 (11)	N23—C31—H31B	109.4
$C8 - O2 - Na5^{ii}$	141.8 (2)	C32—C31—H31B	109.4
$C8-O2-Na2^{i}$	108.1 (2)	H31A—C31—H31B	108.0
Na5 ⁱⁱ —O2—Na2 ⁱ	96.39 (10)	O26—C32—O25	122.9 (4)
C10-O3-Zn1	115.6 (2)	O26—C32—C31	119.3 (3)
	· ·		~ /

C10—O3—Na3 ⁱ	90.2 (2)	O25—C32—C31	117.7 (3)
Zn1—O3—Na3 ⁱ	145.57 (12)	O26—C32—Na4	63.3 (2)
C10—O3—Na4 ⁱ	107.2 (2)	O25—C32—Na4	60.11 (19)
Zn1—O3—Na4 ⁱ	94.54 (9)	C31—C32—Na4	173.9 (3)
Na3 ⁱ —O3—Na4 ⁱ	99.25 (10)	O8P—C11P—O6P	110.1 (2)
C10—O4—Na5 ⁱ	138.8 (2)	O8P—C11P—O5P	110.33 (19)
C10—O4—Na3 ⁱ	86.9 (2)	O6P—Cl1P—O5P	108.4 (2)
Na5 ⁱ —O4—Na3 ⁱ	109.63 (12)	O8P—C11P—O7P	109.66 (18)
C12—O5—Zn1	116.9 (2)	O6P—C11P—O7P	109.42 (18)
C12—O5—Na1 ⁱⁱⁱ	91.8 (2)	O5P—C11P—O7P	108.90 (18)
7n1	142.31 (13)	O11P—Cl2P—O12P	111.1 (2)
C12-O6-Na5	145.5 (2)	O11P—Cl2P—O10P	107.9 (3)
$C12-06-Na2^{iii}$	119.2 (2)	O12P—Cl2P—O10P	108.8 (2)
$N_{2} = 06 - N_{2}^{iii}$	95 30 (10)	011P—Cl2P—O9P	108 29 (19)
$C_{12} = O_6 = N_{21}^{111}$	87.4 (2)	$O_{12}P_{-}O_{$	110.07 (19)
	07.7(2)	$\begin{array}{c} 010P C12P O0P \\ \end{array}$	110.07(17)
Na5—O6—Na1 […]	97.30 (11)	010F	110.7 (2)
Na2 ^m —O6—Na1 ^m	84.29 (9)		107.20 (16)
NI-CI-C2	111.8 (3)	01P	111.07 (19)
NI-CI-HIA	109.3	O_{3P} $-C_{13P}$ $-O_{4P}$	110.22(18) 100.51(18)
C2—CI—HIA	109.3	OIP - CI3P - O2P	109.51 (18)
NI—CI—HIB	109.3	O_{3P} $= C_{13P}$ $= O_{2P}$	110.08 (17)
C2—CI—HIB	109.3	04P—013P—02P	108.74 (18)
HIA—CI—HIB	107.9	O1P—Cl3P—Na3 ¹	53.68 (12)
N2	110.6 (3)	O3P—Cl3P—Na3 ¹	55.65 (11)
N2—C2—H2A	109.5	O4P—Cl3P—Na3 ¹	113.53 (14)
C1—C2—H2A	109.5	O2P—Cl3P—Na3 ⁱ	137.71 (13)
N2—C2—H2B	109.5	O1P—Cl3P—Na4	86.08 (12)
C1—C2—H2B	109.5	O3P—Cl3P—Na4	152.71 (13)
H2A—C2—H2B	108.1	O4P—Cl3P—Na4	85.68 (13)
N2—C3—C4	112.2 (3)	O2P—Cl3P—Na4	42.67 (11)
N2—C3—H3A	109.2	Na3 ⁱ —Cl3P—Na4	139.04 (5)
С4—С3—НЗА	109.2	Cl3P—O1P—Na2	148.54 (18)
N2—C3—H3B	109.2	Cl3P—O1P—Na3 ⁱ	99.08 (15)
C4—C3—H3B	109.2	Na2—O1P—Na3 ⁱ	109.71 (11)
НЗА—СЗ—НЗВ	107.9	Cl3P—O2P—Na5	128.06 (16)
N3—C4—C3	111.3 (3)	Cl3P—O2P—Na4	114.08 (15)
N3—C4—H4A	109.4	Na5—O2P—Na4	112.04 (11)
C3—C4—H4A	109.4	Cl3P—O3P—Na1 ⁱⁱⁱ	134.07 (16)
N3—C4—H4B	109.4	Cl3P—O3P—Na3 ⁱ	96.85 (13)
C3—C4—H4B	109.4	Na1 ⁱⁱⁱ —O3P—Na3 ⁱ	127.71 (11)
H4A—C4—H4B	108.0	Cl1P—O5P—Na3 ⁱ	135.67 (19)
N3—C5—C6	113.1 (3)	Cl1P—O7P—Na2	131.63 (17)
N3—C5—H5A	109.0	O1S-C1S-H1S1	109.5
С6—С5—Н5А	109.0	O1S—C1S—H1S2	109.5

N3—C5—H5B	109.0	H1S1—C1S—H1S2	109.5
С6—С5—Н5В	109.0	O1S-C1S-H1S3	109.5
H5A—C5—H5B	107.8	H1S1—C1S—H1S3	109.5
N1—C6—C5	111.2 (3)	H1S2—C1S—H1S3	109.5
N1—C6—H6A	109.4	C1S—O1S—Na4	121.1 (3)
С5—С6—Н6А	109.4	C1S—O1S—Na2	126.1 (3)
N1—C6—H6B	109.4	Na4—O1S—Na2	107.33 (12)
С5—С6—Н6В	109.4	C1S—O1S—H1S	110 (3)
H6A—C6—H6B	108.0	Na4—O1S—H1S	90 (3)
N1—C7—C8	111.1 (3)	Na2—O1S—H1S	91 (3)
N1—C7—H7A	109.4	O24 ^{vi} —Na1—O26 ^{vii}	114.58 (12)
C8—C7—H7A	109.4	O24 ^{vi} —Na1—O22 ⁱ	95.52 (12)
N1—C7—H7B	109.4	O26 ^{vii} —Na1—O22 ⁱ	103.68 (11)
С8—С7—Н7В	109.4	O24 ^{vi} —Na1—O5 ^{vi}	144.28 (12)
H7A—C7—H7B	108.0	O26 ^{vii} —Na1—O5 ^{vi}	98.30 (10)
O2—C8—O1	123.3 (3)	O22 ⁱ —Na1—O5 ^{vi}	89.56 (11)
O2—C8—C7	118.9 (3)	O24 ^{vi} —Na1—O3P ^{vi}	86.63 (11)
O1—C8—C7	117.8 (3)	O26 ^{vii} —Na1—O3P ^{vi}	84.76 (10)
O2—C8—Na2 ⁱ	49.36 (18)	O22 ⁱ —Na1—O3P ^{vi}	169.35 (12)
O1—C8—Na2 ⁱ	93.7 (2)	O5 ^{vi} —Na1—O3P ^{vi}	82.72 (10)
C7—C8—Na2 ⁱ	128.1 (2)	O24 ^{vi} —Na1—O6 ^{vi}	91.09 (11)
N2	111.6 (3)	O26 ^{vii} —Na1—O6 ^{vi}	149.84 (11)
N2—C9—H9A	109.3	O22 ⁱ —Na1—O6 ^{vi}	88.43 (10)
С10—С9—Н9А	109.3	O5 ^{vi} —Na1—O6 ^{vi}	53.64 (9)
N2—C9—H9B	109.3	O3P ^{vi} —Na1—O6 ^{vi}	81.09 (10)
С10—С9—Н9В	109.3	O22 ⁱ —Na2—O1P	83.69 (11)
H9A—C9—H9B	108.0	O22 ⁱ —Na2—O7P	118.49 (11)
O4—C10—O3	122.5 (3)	O1P—Na2—O7P	82.05 (11)
O4—C10—C9	119.8 (3)	O22 ⁱ —Na2—O2 ^{iv}	139.51 (11)
O3—C10—C9	117.7 (3)	O1P—Na2—O2 ^{iv}	124.75 (11)
O4—C10—Na3 ⁱ	66.3 (2)	O7P—Na2—O2 ^{iv}	95.57 (10)
O3—C10—Na3 ⁱ	61.58 (18)	O22 ⁱ —Na2—O6 ^{vi}	88.60 (10)
C9—C10—Na3 ⁱ	156.8 (3)	O1P—Na2—O6 ^{vi}	160.03 (11)
N3—C11—C12	109.9 (3)	O7P—Na2—O6 ^{vi}	85.54 (10)
N3—C11—H11A	109.7	O2 ^{iv} —Na2—O6 ^{vi}	71.91 (9)
C12—C11—H11A	109.7	O22 ⁱ —Na2—O1S	100.97 (11)
N3—C11—H11B	109.7	O1P—Na2—O1S	75.38 (11)
C12—C11—H11B	109.7	O7P—Na2—O1S	131.66 (11)
H11A—C11—H11B	108.2	O2 ^{iv} —Na2—O1S	65.65 (10)
06—C12—O5	122.7 (4)	O6 ^{vi} —Na2—O1S	124.31 (11)
06—C12—C11	119.9 (3)	O21—Na3—O5P ^{iv}	125.00 (12)
a			
O5—C12—C11	117.4 (3)	O3 ^{iv} —Na3—O5P ^{iv}	85.47 (10)

O5—C12—Na1 ⁱⁱⁱ	60.57 (19)	O3 ^{iv} —Na3—O4 ^{iv}	53.55 (8)
C11—C12—Na1 ⁱⁱⁱ	159.4 (2)	O5P ^{iv} —Na3—O4 ^{iv}	76.41 (10)
O23—Zn2—O21	93.15 (11)	O21—Na3—O1P ^{iv}	81.67 (11)
O23—Zn2—O25	93.30 (10)	O3 ^{iv} —Na3—O1P ^{iv}	130.54 (10)
O21—Zn2—O25	89.92 (10)	O5P ^{iv} —Na3—O1P ^{iv}	79.32 (11)
O23—Zn2—N22	78.54 (11)	O4 ^{iv} —Na3—O1P ^{iv}	154.94 (12)
O21—Zn2—N22	150.85 (11)	O21—Na3—O3P ^{iv}	101.30 (11)
O25—Zn2—N22	118.18 (11)	O3 ^{iv} —Na3—O3P ^{iv}	87.80 (9)
O23—Zn2—N21	116.44 (11)	O5P ^{iv} —Na3—O3P ^{iv}	107.67 (11)
O21—Zn2—N21	78.35 (11)	O4 ^{iv} —Na3—O3P ^{iv}	141.14 (10)
O25—Zn2—N21	148.30 (11)	O1P ^{iv} —Na3—O3P ^{iv}	53.95 (9)
N22—Zn2—N21	80.53 (11)	O21—Na3—C10 ^{iv}	131.52 (12)
O23—Zn2—N23	150.03 (12)	O3 ^{iv} —Na3—C10 ^{iv}	28.26 (9)
O21—Zn2—N23	115.34 (11)	O5P ^{iv} —Na3—C10 ^{iv}	73.33 (11)
O25—Zn2—N23	78.41 (11)	O4 ^{iv} —Na3—C10 ^{iv}	26.73 (9)
N22—Zn2—N23	80.23 (12)	O1P ^{iv} —Na3—C10 ^{iv}	145.51 (12)
N21—Zn2—N23	80.27 (12)	O3P ^{iv} —Na3—C10 ^{iv}	115.66 (11)
O23—Zn2—Na3	87.28 (8)	O21—Na3—O25	65.18 (9)
O21—Zn2—Na3	35.31 (8)	O3 ^{iv} —Na3—O25	81.04 (9)
O25—Zn2—Na3	55.57 (8)	O5P ^{iv} —Na3—O25	164.93 (10)
N22—Zn2—Na3	164.36 (9)	O4 ^{iv} —Na3—O25	90.11 (9)
N21—Zn2—Na3	112.10 (8)	O1P ^{iv} —Na3—O25	114.70 (10)
N23—Zn2—Na3	110.23 (9)	O3P ^{iv} —Na3—O25	78.61 (9)
C27—N21—C21	114.3 (3)	C10 ^{iv} —Na3—O25	91.59 (10)
C27—N21—C26	110.4 (3)	O21—Na3—Cl3P ^{iv}	87.13 (8)
C21—N21—C26	113.4 (3)	O3 ^{iv} —Na3—Cl3P ^{iv}	112.97 (8)
C27—N21—Zn2	104.8 (2)	O5P ^{iv} —Na3—Cl3P ^{iv}	97.78 (9)
C21—N21—Zn2	110.2 (2)	O4 ^{iv} —Na3—Cl3P ^{iv}	165.21 (9)
C26—N21—Zn2	102.8 (2)	O1P ^{iv} —Na3—Cl3P ^{iv}	27.24 (7)
C29—N22—C22	110.3 (3)	O3P ^{iv} —Na3—Cl3P ^{iv}	27.50 (6)
C29—N22—C23	113.3 (3)	C10 ^{iv} —Na3—Cl3P ^{iv}	138.69 (9)
C22—N22—C23	113.7 (3)	O25—Na3—Cl3P ^{iv}	93.66 (7)
C29—N22—Zn2	105.1 (2)	O1 ^{iv} —Na4—O25	152.16 (11)
C22—N22—Zn2	102.9 (2)	O1 ^{iv} —Na4—O1S	81.39 (10)
C23—N22—Zn2	110.6 (2)	O25—Na4—O1S	114.02 (11)
C31—N23—C24	110.2 (3)	O1 ^{iv} —Na4—O26	105.71 (10)
C31—N23—C25	113.2 (3)	O25—Na4—O26	54.58 (9)
C24—N23—C25	113.8 (3)	O1S—Na4—O26	88.20 (11)
C31—N23—Zn2	105.6 (2)	Ol ¹ ^v —Na4—O2P	109.63 (11)
$C_{24} = N_{23} = Zn_{2}$	102.2(2) 110.9(2)	O_{25} Na4 O_{2P}	92.77 (10) 94 51 (11)
C28—O21—Zn2	117.5 (2)	O26—Na4—O2P	144.57 (11)

C28—O21—Na3	129.0 (2)	O1 ^{iv} —Na4—O3 ^{iv}	71.43 (9)
Zn2—O21—Na3	113.50 (12)	O25—Na4—O3 ^{iv}	91.22 (10)
C28—O22—Na2 ^{iv}	138.5 (2)	O1S—Na4—O3 ^{iv}	152.81 (11)
C28—O22—Na1 ^{iv}	127.0 (2)	O26—Na4—O3 ^{iv}	99.40 (10)
Na2 ^{iv} —O22—Na1 ^{iv}	92.88 (11)	O2P—Na4—O3 ^{iv}	94.12 (10)
C30—O23—Zn2	116.8 (2)	O1 ^{iv} —Na4—C32	131.19 (12)
C30—O23—Na5	104.9 (2)	O25—Na4—C32	27.70 (10)
Zn2—O23—Na5	129.88 (13)	O1S—Na4—C32	100.22 (12)
C30—O24—Na1 ⁱⁱⁱ	164.3 (3)	O26—Na4—C32	27.03 (10)
C30—O24—Na5	79.6 (2)	O2P—Na4—C32	118.75 (12)
Na1 ⁱⁱⁱ —O24—Na5	87.28 (11)	O3 ^{iv} —Na4—C32	98.08 (11)
C32—O25—Zn2	116.6 (2)	O1 ^{iv} —Na4—Cl3P	106.80 (8)
C32—O25—Na4	92.2 (2)	O25—Na4—Cl3P	100.27 (8)
Zn2—O25—Na4	150.14 (13)	O1S—Na4—Cl3P	71.34 (8)
C32—O25—Na3	108.3 (2)	O26—Na4—Cl3P	138.03 (9)
Zn2—O25—Na3	89.79 (9)	O2P—Na4—Cl3P	23.25 (7)
Na4—O25—Na3	88.28 (9)	O3 ^{iv} —Na4—Cl3P	115.65 (7)
C32—O26—Na1 ^v	122.2 (2)	C32—Na4—Cl3P	120.02 (9)
C32—O26—Na4	89.6 (2)	O4 ^{iv} —Na5—O2 ^{viii}	94.98 (11)
Na1 ^v —O26—Na4	117.22 (12)	O4 ^{iv} —Na5—O6	118.54 (12)
N21—C21—C22	111.3 (3)	O2 ^{viii} —Na5—O6	79.66 (10)
N21—C21—H21A	109.4	O4 ^{iv} —Na5—O23	114.38 (11)
C22—C21—H21A	109.4	O2 ^{viii} —Na5—O23	94.71 (11)
N21—C21—H21B	109.4	O6—Na5—O23	127.05 (11)
C22—C21—H21B	109.4	O4 ^{iv} —Na5—O2P	84.12 (10)
H21A—C21—H21B	108.0	O2 ^{viii} —Na5—O2P	174.83 (12)
N22—C22—C21	112.1 (3)	O6—Na5—O2P	96.27 (10)
N22—C22—H22A	109.2	O23—Na5—O2P	90.30 (11)
C21—C22—H22A	109.2	O4 ^{iv} —Na5—O24	157.10 (11)
N22—C22—H22B	109.2	O2 ^{viii} —Na5—O24	101.07 (10)
C21—C22—H22B	109.2	O6—Na5—O24	80.68 (10)
H22A—C22—H22B	107.9	O23—Na5—O24	48.48 (9)
N22—C23—C24	109.9 (3)	O2P—Na5—O24	81.29 (10)
N22—C23—H23A	109.7	O4 ^{iv} —Na5—C30	134.93 (12)
С24—С23—Н23А	109.7	O2 ^{viii} —Na5—C30	102.99 (11)
N22—C23—H23B	109.7	O6—Na5—C30	105.29 (11)
С24—С23—Н23В	109.7	O23—Na5—C30	24.50 (10)
H23A—C23—H23B	108.2	O2P—Na5—C30	81.10 (11)
N23—C24—C23	112.5 (3)	O24—Na5—C30	24.72 (9)
	112 (1) 12 12	1 () 1/2 () 1/2	12/2 () 11

Symmetry codes: (i) *x*+1/2, -*y*+1/2, *z*; (ii) *x*+1/2, -*y*-1/2, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*-1/2, -*y*+1/2, *z*; (v) *x*-1/2, -*y*+3/2, *z*; (vi) *x*, *y*+1, *z*; (vii) *x*+1/2, -*y*+3/2, *z*; (viii) *x*-1/2, -*y*+1/2, *z*.

Fig. 2

